basico package

BasiCO is a simplified interface to COPASI.

This module provides convenience functions to quickly get a model loaded and simulated:

Example

>>> from basico import *
>>> load_biomodel(10)
>>> run_time_course().plot()

Submodules

basico.biomodels module

A submodule for accessing the BioModels API.

This submodule accesses the BioModels REST api as described on:

Examples

>>>  # get info for a specific model
>>>  info = get_model_info(12)
>>>  print(info['name'], info['files']['main'][0]['name'])
>>>  # get all files for one model
>>>  files = get_files_for_model(12)
>>>  print(files['main'][0]['name'])
>>>  # get content of specific model
>>>  sbml = get_content_for_model(12)
>>>  print(sbml)
>>>  # search for model
>>>  models = search_for_model('repressilator')
>>>  for model in models:
>>>     print(model['id'], model['name'], model['format'])
basico.biomodels.download_from(url)

Convenience method reading content from a URL.

This convenience method uses urlopen on either python 2.7 or 3.x

Parameters:

url (str) – the url to read from

Returns:

the contents of the URL as str

Return type:

str

basico.biomodels.download_json(url)

Convenience method reading the content of the url as JSON.

Parameters:

url (str) – the url to read from

Returns:

a python object representing the json content loaded

Return type:

dict

basico.biomodels.get_content_for_model(model_id, file_name=None)

Downloads the specified file from biomodels

Parameters:
  • model_id – the model id as int, or string

  • file_name – the filename to download (or None, to download the main file)

Returns:

the content of the specified file

basico.biomodels.get_files_for_model(model_id)

Retrieves the json structure for all files for the given biomodel.

The structure is of form:

>>> get_files_for_model(10)
{
    'additional': [
        {'description': 'Auto-generated Scilab file',
         'fileSize': '3873',
         'name': 'BIOMD0000000010.sci'},
         ...
    ],
    'main': [
        {'fileSize': '31568',
         'name': 'BIOMD0000000010_url.xml'
        }
    ]
}
Parameters:

model_id – the model id (as int or string)

Returns:

json structure

basico.biomodels.get_model_info(model_id)

Return the model info for the provided model_id.

Parameters:

model_id – either an integer, or a valid model id

Returns:

a python object describing the model

basico.biomodels.search_for_model(query, offset=0, num_results=10, sort='id-asc')

Queries the biomodel database

Queries the database, for information about the query system see: <https://www.ebi.ac.uk/biomodels-static/jummp-biomodels-help/model_search.html>

Example

>>> search_for_model('glycolysis')
[...,
    {
    'format': 'SBML',
    'id': 'BIOMD0000000206',
    'lastModified': '2012-07-04T23:00:00Z',
    'name': 'Wolf2000_Glycolytic_Oscillations',
    'submissionDate': '2008-11-27T00:00:00Z',
    'submitter': 'Harish Dharuri',
    'url': 'https://www.ebi.ac.uk/biomodels/BIOMD0000000206'
    }
]

Note by default, it will include only manually curated models, to obtain Non-curated models you would use:

>>> search_for_model('Hodgkin AND curationstatus:"Non-curated"')
[...,
    {
    'format': 'SBML',
    'id': 'MODEL1006230012',
    'lastModified': '2012-02-02T00:00:00Z'',
    'name': 'Stewart2009_ActionPotential_PurkinjeFibreCells',
    'submissionDate': '2010-06-22T23:00:00Z',
    'submitter': 'Camille Laibe',
    'url': 'https://www.ebi.ac.uk/biomodels/MODEL1006230012'
    }
]
Parameters:
  • query – the query to use (it will be encoded with quote_plus before send out, so it is safe to use spaces)

  • offset – offset (defaults to 0)

  • num_results – number of results to obtain (defaults to 10)

  • sort – sort criteria to be used (defaults to id-asc)

Returns:

the search result as [{}]

basico.compartment_array_tools module

This module provides convenience functions for array of compartments.

COPASI can duplicate the current model in either a rectangular or linear manner, with diffusion reactions added in between the created model. This allows for a simplified spatial simulation.

This submodule adds functions, to create such an array, to delete the template model. Additionally some basic plotting functionality is available as well.

Example

>>> dm = load_example('brusselator')
>>> create_rectangular_array(10, 10, ['X', 'Y'], [0.16, 0.8], delete_template=True)
>>> set_species(['X{compartment[1,1]}',
...             'X{compartment[1,2]}',
...             'X{compartment[2,1]}',
...             'X{compartment[2,2]}'], initial_concentration=10)
>>> add_event('E0', 'Time > 10', [['X{compartment[1,1]}', '10'],
...                              ['X{compartment[1,2]}', '10'],
...                              ['X{compartment[2,1]}', '10'],
...                              ['X{compartment[2,2]}', '10']])
>>> data = run_time_course(start_time=0, duration=500)
>>> animate_rectangular_time_course_as_image(data, metabs=["X", "Y"], min_range=0, max_range=10)
basico.compartment_array_tools.animate_rectangular_time_course(data, metab=None, prefix=None, shading='gouraud', min_range=nan, max_range=nan, filename=None, **kwargs)

Plots the simulation data on the loaded model assuming that this is in the format of an array of compartments as generated by COPASI. This will create a figure for each species at each of the specified time points.

Parameters:
  • data – timecourse simulation result

  • metab – optional parameter specifying the species to animate. If not given, one the first metab will be chosen

  • prefix – string of compartment prefix to indicate which compartment should be visualized. This is expected to not include the indices, so it would be ‘compartment’ rather than ‘compartment[0]’

  • shading – optional shading for the color mesh, defaults to ‘gouraud’ can also be ‘flat’

  • min_range – optional min range, defaults to NaN, meaning that it is to be the minimum value of the data

  • max_range – optional max range, defaults to NaN, meaning that it is to be the maximum value of the data

  • filename – optional filename to a file to which to save the animation to

  • kwargs

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

the FuncAnimation constructed

basico.compartment_array_tools.animate_rectangular_time_course_as_image(data, metabs=None, prefix=None, min_range=nan, max_range=nan, filename=None, **kwargs)

Plots the data as image.

Parameters:
  • data – data frame with results to plot

  • metabs

  • prefix – string of compartment prefix to indicate which compartment should be visualized. This is expected to not include the indices, so it would be ‘compartment’ rather than ‘compartment[0]’

  • min_range – optional min range, defaults to NaN, meaning that it is to be the minimum value of the data

  • max_range – optional max range, defaults to NaN, meaning that it is to be the maximum value of the data

  • filename – optional filename to safe the image as

  • kwargs

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

FuncAnimation result

basico.compartment_array_tools.create_linear_array(num_steps, species=None, diffusion_coefficients=None, compartment_names=None, delete_template=False, **kwargs)

Utility function to create a linear duplicating the specified species, their reactions in the given compartments and created diffusion reactions between the newly created array

Parameters:
  • num_steps – the number of steps to create

  • species – array of species names, that should be diffusing between compartments

  • compartment_names – optional compartment names (will default to the compartment the species is in)

  • diffusion_coefficients – optional array of diffusion coefficients in the same order as the species (otherwise they will be set to 1)

  • delete_template – if True, the original template model in the specified compartment will be deleted.

  • kwargs

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.compartment_array_tools.create_rectangular_array(num_steps_x, num_steps_y, species=None, diffusion_coefficients=None, compartment_names=None, delete_template=False, **kwargs)

Utility function to create a rectangular array duplicating the specified species, their reactions in the given compartments and created diffusion reactions between the newly created array

Parameters:
  • num_steps_x – the number of compartments to create along the x direction

  • num_steps_y – the number of compartments to create along the y direction

  • species – array of species names, that should be diffusing between compartments

  • compartment_names – optional compartment names (will default to the compartment the species is in)

  • diffusion_coefficients – optional array of diffusion coefficients in the same order as the species (otherwise they will be set to 1)

  • delete_template – if True, the original template model in the specified compartment will be deleted.

  • kwargs

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.compartment_array_tools.delete_compartments(selection, **kwargs)

utility function for deleting a selection of compartments from the datamodel. This will also delete the species and reactions included.

Parameters:
  • selection – an array of tuples of indices at which the compartments should be deleted

  • kwargs

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.compartment_array_tools.plot_linear_time_course(data, prefix=None, metab_names=None, shading='gouraud', min_range=nan, max_range=nan, **kwargs)

Plots the simulation data on the loaded model assuming that this is in the format of an array of compartments as generated by COPASI. This will create a figure for each species

Parameters:
  • data – timecourse simulation result

  • prefix – string of compartment prefix to indicate which compartment should be visualized. This is expected to not include the indices, so it would be ‘compartment’ rather than ‘compartment[0]’

  • metab_names – optional array of metabolite names that should be plotted (defaults to all)

  • shading – optional shading for the color mesh, defaults to ‘gouraud’ can also be ‘flat’

  • min_range – optional min range, defaults to NaN, meaning that it is to be the minimum value of the data

  • max_range – optional max range, defaults to NaN, meaning that it is to be the maximum value of the data

  • kwargs

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

array with tuple of figures and their axis

basico.compartment_array_tools.plot_rectangular_time_course(data, times=None, prefix=None, shading='gouraud', min_range=nan, max_range=nan, **kwargs)

Plots the simulation data on the loaded model assuming that this is in the format of an array of compartments as generated by COPASI. This will create a figure for each species at each of the specified time points.

Parameters:
  • data – timecourse simulation result

  • times – optional parameter specifying the times for which to plot the results. If not given, one figure will be created for each output time point in the data

  • prefix – string of compartment prefix to indicate which compartment should be visualized. This is expected to not include the indices, so it would be ‘compartment’ rather than ‘compartment[0]’

  • shading – optional shading for the color mesh, defaults to ‘gouraud’ can also be ‘flat’

  • min_range – optional min range, defaults to NaN, meaning that it is to be the minimum value of the data

  • max_range – optional max range, defaults to NaN, meaning that it is to be the maximum value of the data

  • kwargs

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

array with tuple of figures and their axis

basico.jws_online module

Convenience module to access JWS models

This module provides convenience functions for accessing models from JWS Online <https://jjj.mib.ac.uk> using the netherlands endpoint.

Example

>>> # get all models with ATP
>>> atp_models = get_models_for_species('atp')
>>> # get all models with PFK
>>> pfk_models = get_models_for_reaction('pfk')
>>> # get all_models (this will take a while)
>>> all = get_all_models()
>>> # get manuscript information
>>> manuscript = get_manuscript('teusink')
>>> print(manuscript['title'], manuscript['abstract'], manuscript['url'])
>>> # get info for a specific model
>>> info = get_model_info('teusink')
>>> print(info['name'], info['status'])
>>> # get content of specific model
>>> sbml = get_sbml_model('teusink')
>>> print(sbml)
basico.jws_online.download_from(url)

Convenience method reading content from a URL.

This convenience method uses urlopen on either python 2.7 or 3.x

Parameters:

url (str) – the url to read from

Returns:

the contents of the URL as str

Return type:

str

basico.jws_online.download_json(url)

Convenience method reading the content of the url as JSON.

Parameters:

url (str) – the url to read from

Returns:

a python object representing the json content loaded

Return type:

dict

basico.jws_online.get_all_models()

Returns the list of all models

>>> get_all_models()
[...,
    {
    'slug': 'zi1',
    'name': 'zi1',
    'cbm': False,
    'status': 'CURATED',
    'details': 'https://jjj.bio.vu.nl/rest/models/zi1/',
    'manuscript': 'https://jjj.bio.vu.nl/rest/models/zi1/manuscript/',
    'experiments': 'https://jjj.bio.vu.nl/rest/models/zi1/experiments/'
    }
]
Returns:

list of model ids

basico.jws_online.get_manuscript(model_id)

Returns information about the model manuscript

>>> get_manuscript('wolf')
Parameters:

model_id – valid model slug

Returns:

manuscript structure (list of dictionary)

basico.jws_online.get_mathematica_model(model_id)

Return the mathematica model for the slug

Parameters:

model_id – valid model slug

Returns:

the model as mathematica notebook

basico.jws_online.get_model_info(model_id)

Returns information about the JWS model

>>> get_model_info('wolf')
{
    'slug': 'wolf',
    'id': 'wolf',
    'name': 'wolf',
    'cbm': False,
    'status': 'CURATED',
    'species_set': ['at (ATP)', ... ],
    'reaction_set': ['v_1 (glucose transporter)', ...],
    'event_set': [],
    'parameter_set': ['atot',...]
}
Parameters:

model_id – a valid jws slug

Returns:

structure with information about the model [{}]

basico.jws_online.get_models_for_reaction(reaction)

Searches for models containing a specific reaction

>>> get_models_for_reaction('pfk')
Parameters:

reaction – name of the reaction to search for

Returns:

(list of dictionary) of all models containing the reaction

basico.jws_online.get_models_for_species(species)

Searches for models containing a specific chemical species

>>> get_models_for_species('atp')
Parameters:

species – the species name to search for

Returns:

(list of dictionary) of all models containing this species

basico.jws_online.get_sbml_model(model_id)

Returns the SBML for the model.

Parameters:

model_id – valid model slug

Returns:

the model as sbml string

basico.model_info module

The model_info module contains basic functionality for interrogating the model.

Here all functionality for interrogating and manipulating the model is hosted. For each of the elements:

  • compartments

  • species

  • parameters

  • events

  • reactions

you will find functions to add, get, set, and remove them.

class basico.model_info.T

Bases: object

Constants for Task names

Convert between task names to enums

>>> T.from_enum(0)
Steady-State
>>> T.to_enum('Steady-State')
0
CROSS_SECTION = 'Cross Section'
EFM = 'Elementary Flux Modes'
LNA = 'Linear Noise Approximation'
LYAPUNOV_EXPONENTS = 'Lyapunov Exponents'
MCA = 'Metabolic Control Analysis'
MOIETIES = 'Moieties'
OPTIMIZATION = 'Optimization'
PARAMETER_ESTIMATION = 'Parameter Estimation'
SCAN = 'Scan'
SENSITIVITIES = 'Sensitivities'
STEADY_STATE = 'Steady-State'
TIME_COURSE = 'Time-Course'
TIME_COURSE_SENSITIVITIES = 'Time-Course Sensitivities'
TIME_SCALE_SEPARATION = 'Time Scale Separation Analysis'
classmethod all_task_names()
classmethod from_enum(int_value)
classmethod to_enum(value)
basico.model_info.add_amount_expressions(**kwargs)

Utility function that adds model values for all metabolites to the model to compute the amount

The global parameters created will be named amount(metab_name), and so can be accessed at any time. Should the amount already exist, it will not be modified.

Parameters:

kwargs

optional parameters

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)

Returns:

None

basico.model_info.add_compartment(name, initial_size=1.0, **kwargs)

Adds a new compartment to the model.

Parameters:
  • name (str) – the name for the new compartment

  • initial_size (float) – the initial size for the compartment

  • kwargs

    optional parameters, recognized are:

Returns:

the compartment added

basico.model_info.add_default_plot(name, **kwargs)

Adds a default plot to the list of plots

Parameters:
  • name (str) – name of the default plot

  • kwargs

    optional arguments

    • new_name: to rename the plot specification
    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

none or the name of the plot created

Return type:

str or None

basico.model_info.add_equation(eqn, time_symbol='t', **kwargs)

This function allows to add arbitrary equations to the current model.

This function allows adding arbitrary ODE’s / assignments to the model. Nonexisting model entities will be created.

Parameters:
  • eqn (str) – the equation for example of form: d[X]/dt = k1 * exp({Time})

  • time_symbol (str) – optional symbol that will be used for time (defaults to t)

  • kwargs

Returns:

basico.model_info.add_event(name, trigger, assignments, **kwargs)

Adds a new event to the model.

Parameters:
  • name (str) – the name for the new event

  • trigger (str) – the trigger expression to be used. The expression can consist of all display names. for example Time > 10 would make the event trigger at time 10.

  • assignments ([(str,str)]) – All the assignments that should be made, when the event fires. This should be a list of tuples where the first element is the name of the element to change, and the second element the assignment expression.

  • kwargs

    optional parameters, recognized are:

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)
    • ’new_name’: the new name for the event

    • ’delay’: the delay expression

    • ’priority’: the priority expression

    • ’persistent’: boolean indicating if the event is persistent

    • ’delay_calculation’: boolean indicating whether just the assignment is delayed, or the

      calculation as well

    • ’fire_at_initial_time’: boolean indicating if the event should fire at the initial time

Returns:

the newly created event

basico.model_info.add_event_assignment(name, assignment, exact=False, **kwargs)

Adds an event assignment to the named event

Parameters:
  • name (str) – the name (or substring of name) of an event

  • assignment ([(str,str)] or (str, str)) – tuple or list of tuples of event assignments of form (target, expression)

  • exact (bool) – boolean indicating whether the named expression has to be exact

Returns:

None

basico.model_info.add_function(name, infix, type='general', mapping=None, **kwargs)

Adds a new function definition if none with that name already exists

Parameters:
  • name (str) – the name for the new function

  • infix (str) – the formula for the new function (e.g: V * S / ( K + S ))

  • type (str) – optional flag specifying whether the function is ‘reversible’, ‘irreversible’ or ‘general’

  • mapping (dict) –

    optional dictionary mapping the elements of the infix to their usage. If not specified, the usage will default to parameter, other values possible would be substrate, product, modifier, volume or `time. One example for the infix for the infix above we would specify that S is substrate:

    { ‘S’: ‘substrate’ }

  • kwargs

    optional parameters, recognized are:

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

basico.model_info.add_parameter(name, initial_value=1.0, **kwargs)

Adds a new global parameter to the model.

Parameters:
  • name (str) – the name for the new global parameter

  • initial_value (float) – optional the initial value of the parameter (defaults to 1)

  • kwargs

    optional parameters, recognized are:

Returns:

the newly created parameter

basico.model_info.add_parameter_set(name, param_set_dict=None, **kwargs)

Adds a new parameter set to the model with the values from the dictionary

Parameters:
  • name (str) – name of the parameter set to add

  • param_set_dict (dict or None) – dictionary with the parameter set values if empty, the current state of the model will be used

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

basico.model_info.add_plot(name, **kwargs)

Adds a new plot specification to the model.

Parameters:
  • name (str) – the name for the new plot specification

  • kwargs

    optional parameters, recognized are:

Returns:

the plot

basico.model_info.add_reaction(name, scheme, **kwargs)

Adds a new reaction to the model

Parameters:
  • name (str) – the name for the new reaction

  • scheme (str) – the reaction scheme for the new reaction, if it includes Species that do not exist yet in the model they will be created. So for example a scheme of A -> B would create species A and B if they would not exist in the model, before creating the irreversible reaction.

  • kwargs

    optional parameters, recognized are:

Returns:

the newly created reaction

basico.model_info.add_report(name, **kwargs)

Adds a new report specification to the model.

Examples

The following would adds a report definition ‘Time Course’ to include Time and the concentration of S, in a report that is separated by tabs.

>>> add_report('Time Course', body=['Time', '[S]']
The following defines a report for the Steady State concentration of S. To disambiguate, that the

string ‘[S]’ in the header should be used literally, we call the function wrap_copasi_string.

>>> add_report('Steady State', task=T.STEADY_STATE, header=[wrap_copasi_string('[S]')], footer=['[S]'])
Parameters:
  • name (str) – the name for the new plot specification

  • kwargs

    optional parameters, recognized are:

Returns:

the report definition

basico.model_info.add_species(name, compartment_name='', initial_concentration=1.0, **kwargs)

Adds a new species to the model.

Parameters:
  • name (str) – the name for the new species

  • compartment_name (str) – optional the name of the compartment in which the species should be created, it will default to the first compartment. If no compartment is present, a unit compartment named compartment will be created.

  • initial_concentration (float) – optional the initial concentration of the species

  • kwargs

    optional parameters, recognized are:

Returns:

the newly created species

basico.model_info.apply_parameter_set(name, exact=False, **kwargs)

Applies the parameter set with the given name to the model

Parameters:
  • name – the name of the parameter set or a substring of the name

  • exact – boolean indicating whether the name has to match exactly

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

basico.model_info.as_dict(df, fold_list=True)

Convenience function returning the data frame as dictionary

Parameters:
  • df (pd.DataFrame) – the data frame

  • fold_list (bool) – optional boolean indicating whether to fold lists into a single dictionary, if there is only one entry (defaults to true)

Returns:

the contents of the dataframe as [{}] if there are multiple ones, otherwise the dictionary if just one, or None

Return type:

List[Dict] or Dict or None

basico.model_info.assign_report(name, task, filename='', append=True, confirm_overwrite=True, **kwargs)

Assigns the named report to the specified task

Parameters:
  • name (str) – the name of the report definition to assign

  • task (Union[int, str, COPASI.CCopasiTask]) – the task to assign the report to

  • filename (str) – the filename to write the result to or ‘’, if it is the empty, it resets the target of the task, and COPASI will not create that report

  • append (bool) – boolean indicating whether output should be appended (defaults to True)

  • confirm_overwrite (bool) – boolean indicating whether the copasi should ask before overwriting a file

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.get_cn(name_or_reference, initial=False, **kwargs)

Gets the cn of the named element or none

Parameters:
  • name_or_reference (str or COPASI.CDataObject) – display name of model element

  • initial (bool) – if True, an initial reference cn will be returned, rather than a transient one

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

the cn if found or None

Return type:

str or None

basico.model_info.get_compartments(name=None, exact=False, **kwargs)

Returns all information about the compartments as pandas dataframe.

Parameters:
  • name (str) – optional filter expression for the compartment, if it is not included in the name, the compartment will not be added to the data set.

  • exact (bool) – boolean indicating, that the name has to be exact

  • kwargs

    optional arguments:

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

a pandas dataframe with the information about the compartment

Return type:

pandas.DataFrame

basico.model_info.get_copasi_messages(num_messages_before, filters=None)

Returns error messages that occurred while initializing or running the simulation

Parameters:
  • num_messages_before – number of messages before calling initialization or process

  • filters (list of str or str or None) – optional list of filter expressions of what messages to ignore

Returns:

error messages in form of a string

basico.model_info.get_default_plot_names(filter=None, **kwargs)

Returns a list of default plot names

Parameters:
  • filter – optional filter of substring to be in the name

  • kwargs

Returns:

basico.model_info.get_events(name=None, exact=False, **kwargs)

Returns all information about the events as pandas dataframe.

Parameters:
  • name (str) – optional filter expression for the event, if it is not included in the event name, the event will not be added to the data set.

  • exact (bool) – boolean indicating whether the name has to be exact

  • kwargs

    optional arguments:

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

a pandas dataframe with the information about the event

Return type:

pandas.DataFrame

basico.model_info.get_functions(name=None, **kwargs)

Returns all available functions as pandas dataframe.

Parameters:
  • name (str) – optional filter expression for the functions, if it is not included in the name, the function will not be added to the data set.

  • kwargs

    optional arguments:

    • reversible: to further filter for functions that are only reversible

    • suitable_for: an optional reaction for which to filter the function list. Only functions
      suitable for the reaction will be returned
    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

a pandas dataframe with the information about the functions

Return type:

pandas.DataFrame

basico.model_info.get_jacobian_matrix(apply_initial_values=False, **kwargs)

Returns the jacobian matrix of the model at the current state

Parameters:
  • apply_initial_values (bool) – if set to the the initial values will be applied, otherwise the jacobian from the current state will be returned

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

the stoichiometry matrix of the current model

Return type:

pd.DataFrame

basico.model_info.get_miriam_annotation(**kwargs)

Returns the elements miriam annotations as dictionary of the form:

{

‘created’: datetime, ‘creators’: [{

‘first_name’: ‘…’, ‘last_name’: ‘…’, ‘email’: ‘…’, ‘organization’: ‘…’

},…],

‘references’: [{

‘id’: ‘…’, ‘uri’: ‘identifiers.org uri’, ‘resource’: ‘human readable name of resource’, ‘description’, ‘…’

},…],

‘descriptions’: [{

‘id’: ‘…’, ‘qualifier’: ‘human readable qualifier string’, ‘uri’: ‘identifiers.org uri’, ‘resource’: ‘name of the resource referenced’

},…], ‘modifications’: [datetime,…]

}

Parameters:

kwargs

optional parameters, recognized are:

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • name: the display name of the element to set the notes on.
    otherwise the main model will be taken.
  • element: any model element

Returns:

the elements annotation as dictionary as described

Return type:

{}

basico.model_info.get_miriam_resources(compact=True)

Retrieves the current MIRIAM resources from the configuration

Parameters:

compact (bool) – whether to return a compact version of the resources (default: True)

Returns:

dataframe with the list of current miriam resources

Return type:

pandas.DataFrame

basico.model_info.get_model_name(**kwargs)

Returns the name of the current model.

Parameters:

kwargs

optional parameters

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)

Returns:

the name of the model

basico.model_info.get_model_units(**kwargs)

Returns all model units as dictionary.

Parameters:

kwargs

optional parameters

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)

Returns:

a dictionary containing the model units in the form: | { | ‘time_unit’: ‘’, | ‘quantity_unit’: ‘’, | ‘length_unit’: ‘’, | ‘area_unit’: ‘’, | ‘volume_unit’: ‘’, | }

basico.model_info.get_notes(**kwargs)

Returns all notes on the element or model.

Parameters:

kwargs

optional parameters, recognized are:

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • name: the display name of the element to set the notes on.
    otherwise the main model will be taken.
  • element: any model element

Returns:

the notes string (plain text, or xhtml)

Return type:

str

basico.model_info.get_parameter_sets(name=None, exact=False, values_only=False, **kwargs)

Returns the list of parameter sets

Parameters:
  • name (str) – name of the parameter set to return (or a substring of the name)

  • exact (bool) – boolean indicating whether the name has to be exact or not (default: False)

  • values_only (bool) – boolean indicating whether to return only the values of the entries of the parameter set or a dictionary describing it (default: False)

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

basico.model_info.get_parameters(name=None, exact=False, **kwargs)

Returns all information about the global parameters as pandas dataframe.

Parameters:
  • name (str) – optional filter expression for the parameters, if it is not included in the name, the parameter will not be added to the data set.

  • exact (bool) – boolean indicating that the name has to be exact

  • kwargs

    optional arguments:

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

a pandas dataframe with the information about the parameter

Return type:

pandas.DataFrame

basico.model_info.get_plot_dict(plot_spec, **kwargs)

Returns the information for the specified plot

Parameters:
  • plot_spec (Union[str,int,COPASI.CPlotSpecification]) – the name, index or plot specification object

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

dictionary of the form: | { | ‘name’: ‘Phase Plot’, | ‘active’: True, | ‘log_x’: False, | ‘log_y’: False, | ‘tasks’: ‘’, | ‘curves’: | [ | { | ‘name’: ‘[Y]|[X]’, # the name of the curve | ‘type’: ‘curve2d’,# type of the curve (one of curve2d, histoItem1d, bandedGraph | or spectogram) | ‘channels’: [‘[X]’, ‘[Y]’], # display names of all the items to be plotted | ‘color’: ‘auto’, # color as hex rgb value (i.e ‘#ff0000’ for red) or ‘auto’ | ‘line_type’: ‘lines’,# the line type (one of lines, points, symbols or | lines_and_symbols) | ‘line_subtype’: ‘solid’, # line subtype (one of solid, dotted, dashed, dot_dash or | dot_dot_dash) | ‘line_width’: 2.0, # line width | ‘symbol’: ‘small_cross’, # the symbol to be used (one of small_cross, large_cross | or circle ) | ‘activity’: ‘during’ # when the data should be collected (one of ‘before’, ‘during’, ‘after’) | from task | } | ] | }

basico.model_info.get_plots(name=None, **kwargs)

Returns all information about the plot definitions as pandas dataframe.

Parameters:
  • name (str) – optional filter expression for the plots, if it is not included in the plot name, the plot will not be added to the data set.

  • kwargs

    optional arguments:

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

a pandas dataframe with the information about the plot see also get_plot_dict()

Return type:

pandas.DataFrame

basico.model_info.get_reaction_mapping(reaction, **kwargs)

Returns the reaction mapping of the given reaction

Parameters:
  • reaction (str or COPASI.CReaction) – name of a reaction, or the reaction object

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

the dictionary with the reaction mapping

Return type:

{}

basico.model_info.get_reaction_parameters(name=None, **kwargs)

Returns all local parameters as pandas dataframe.

This also includes global parameters that are mapped to local ones.

Parameters:
  • name (str) – optional filter expression, if it is not included in the name, the function will not be added to the data set.

  • kwargs

    optional arguments:

    • reaction_name: to further filter for local parameters of only certain reactions
      (that contain the substring)
    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

a pandas dataframe with the information about local parameters

Return type:

pandas.DataFrame

basico.model_info.get_reactions(name=None, exact=False, **kwargs)

Returns all reactions as pandas dataframe.

Parameters:
  • name (str) – optional filter expression, if it is not included in the name, the reaction will not be added to the data set.

  • exact (bool) – boolean indicating, that the name has to be exact

  • kwargs

    optional arguments:

    • reaction_name: to further filter for local parameters of only certain reactions
      (that contain the substring)
    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

a pandas dataframe with the information about local parameters

Return type:

pandas.DataFrame

basico.model_info.get_reduced_jacobian_matrix(apply_initial_values=False, **kwargs)

Returns the jacobian matrix of the reduced model at the current state

Parameters:
  • apply_initial_values (bool) – if set to the the initial values will be applied, otherwise the jacobian from the current state will be returned

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

the stoichiometry matrix of the reduced current model

Return type:

pd.DataFrame

basico.model_info.get_reduced_stoichiometry_matrix(**kwargs)

Returns the reduced stoichiometry matrix of the model

Returns:

the stoichiometry matrix of the current model

Return type:

pd.DataFrame

basico.model_info.get_report_dict(report, **kwargs)

Returns all information about the plot as dictionary

Parameters:
  • report (COPASI.CReportDefinition or int or str) – report definition, index or name

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

a dictionary with all information about the plot

Return type:

dict

basico.model_info.get_reports(name=None, ignore_automatic=False, task=None, **kwargs)

Returns the reports as dataframe

Parameters:
  • name – optional filter by name

  • ignore_automatic – if true, only manually created reports are returned

  • task – optional task name, to the get the report for

  • kwargs

    optional arguments:

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

a data frame with all the report information

Return type:

pd.DataFrame

basico.model_info.get_scheduled_tasks(**kwargs)

Returns the list of scheduled tasks

Parameters:

kwargs

optional parameters

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)

Returns:

list of tasks that are scheduled

Return type:

[str]

basico.model_info.get_species(name=None, exact=False, **kwargs)

Returns all information about the species as pandas dataframe.

Example:

Assume you have the brusselator example loaded load_example(‘brusselator’)

>>> get_species()

returns you a dataframe of all species with the species name as index.

>>> get_species('X')

returns you only those species, that include X in the name.

Parameters:
  • name (str) – optional filter expression for the species, if it is not included in the species name, the species will not be added to the data set.

  • exact (bool) – if true, the name has to match precisely the name of the species

  • kwargs

    optional arguments to further filter down the species. recognized are:

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)
    • compartment: to filter down only species in specific compartments

    • type: to filter for species of specific simulation type

Returns:

a pandas dataframe with the information about the species

Return type:

pandas.DataFrame

basico.model_info.get_stoichiometry_matrix(**kwargs)

Returns the stoichiometry matrix of the model

Returns:

the stoichiometry matrix of the current model

Return type:

pd.DataFrame

basico.model_info.get_task_settings(task, basic_only=True, **kwargs)

Returns the settings of the given task

Parameters:
  • task (COPASI.CCopasiTask or str) – the task to read the settings of

  • basic_only (bool) – boolean flag, indicating that only the basic parameters should be returned

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

dict of task settings

Return type:

{}

basico.model_info.get_time_unit(**kwargs)

Returns the time unit of the model

basico.model_info.get_value(name_or_reference, initial=False, **kwargs)

Gets the value of the named element or nones

Parameters:
  • name_or_reference (str or COPASI.CDataObject) – display name of model element

  • initial (bool or None) – if True, an initial value will be returned, rather than a transient one. If set to None, the default reference will be returned and not coerced.

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

the value if found or None

Return type:

float or None

basico.model_info.have_miriam_resources()

Utility function returning whether MIRIAM resources are avaialble

Returns:

boolean indicating whether there are MIRIAM resources available or not

Return type:

bool

basico.model_info.remove_amount_expressions(**kwargs)

Utility function that removes model values created using add_amount_expressions.

The global parameters created will be named amount(metab_name), and so can be accessed at any time.

Parameters:

kwargs

optional parameters

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)

Returns:

None

basico.model_info.remove_compartment(name, **kwargs)

Deletes the named compartment (and everything included)

Parameters:
  • name (str) – the name of a compartment in the model

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.remove_event(name, **kwargs)

Deletes the named event

Parameters:
  • name (str) – the name of an event in the model

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.remove_function(name, **kwargs)

Removes the function with the given name

Parameters:
  • name (str) – the name of the function to be removed

  • kwargs

    optional parameters, recognized are:

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

basico.model_info.remove_parameter(name, **kwargs)

Deletes the named global parameter

This will also delete any model element that uses this parameter, so if it appears in any model expression, the elements using these expressions will also be deleted. To prevent that, use the recursive parameter.

Parameters:
  • name (str | List[str]) – the name of a parameter in the model

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.remove_parameter_sets(name=None, exact=False, **kwargs)

remove the named parameter set(s)

Parameters:
  • name (str) – name of the parameter set to remove (or a substring of the name)

  • exact (bool) – boolean indicating whether the name has to be exact

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

basico.model_info.remove_plot(name, **kwargs)

Deletes the named plot

Parameters:
  • name (str) – the name of an plot in the model

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.remove_reaction(name, **kwargs)

Deletes the named reaction

Parameters:
  • name (str) – the name of a reaction in the model

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.remove_report(name, **kwargs)

Deletes the named report

Parameters:
  • name (str) – the name of a report in the model

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.remove_report_from_task(task, **kwargs)

Clears the report filename from the specified task

Parameters:
  • task (Union[int, str, COPASI.CCopasiTask]) – the task to assign the report to

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.remove_species(name, **kwargs)

Deletes the named species

Parameters:
  • name (str) – the name of a species in the model

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.remove_user_defined_functions()

Removes all user defined functions along with all elements that still use them

basico.model_info.run_scheduled_tasks(include_plots=True, include_general_plots=False, plots=None, reports=None, **kwargs)

Runs all scheduled tasks, optionally producing plots and reports

Parameters:
  • include_plots – boolean indicating whether to produce the plots associated with the task

  • include_general_plots – boolean indicating whether to produce the general plots

  • plots – optional list of plot dataframes computed by the task

  • reports – optional list of report dataframes computed by the task

Returns:

Figure produced if include_plots is true, otherwise None

basico.model_info.run_task(task_name, include_plots=True, include_general_plots=False, plots=None, reports=None, **kwargs)

Utility function that runs the named task and returns the result

Parameters:
  • task_name (str) – the name of the task e.g. ‘Time-Course’ to run the timecourse task. See the basico.T for all the task names.

  • include_plots (bool) – boolean indicating whether to produce the plots associated with the task

  • include_general_plots (bool) – boolean indicating whether to produce the general plots (those not specified to a particular task)

  • plots (list[pandas.DataFrame] or None) – optional list of plot dataframes computed by the task

  • reports (list[pandas.DataFrame] or None) – optional list of report dataframes computed by the task

Returns:

Figures produced if include_plots is true, otherwise None

basico.model_info.set_compartment(name=None, exact=False, **kwargs)

Sets properties of the named compartment

Parameters:
  • name (str) – the name of the compartment (or a substring of the name)

  • exact (bool) – boolean indicating whether the name has to be exact

  • kwargs

    optional arguments

    • new_name: the new name for the compartment
    • initial_value or initial_size: to set the initial size of the compartment
    • value or size: to set the transient size of the compartment
    • initial_expression: the initial expression for the compartment
    • status or type: the type of the compartment one of fixed, assignment or ode
    • expression: the expression for the compartment (only valid when type is ode or assignment)
    • dimensionality: sets the dimensionality of the compartment (int value 1..3)
    • notes: sets notes for the compartment (either plain text, or valid xhtml)
    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.set_element_name(element, new_name, **kwargs)

Sets the name of the element

Parameters:
  • element (COPASI.CDataObject or str) – the element whose name to change

  • new_name (str) – the new name for the element

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

basico.model_info.set_event(name, exact=False, trigger=None, assignments=None, **kwargs)

Sets properties of the named event

Parameters:
  • name (str) – the name of the event (or a substring of the name)

  • exact (bool) – boolean indicating, that the name has to be exact

  • trigger (str or None) – the trigger expression to be used. The expression can consist of all display names. for example Time > 10 would make the event trigger at time 10.

  • assignments ([(str,str)] or None) – All the assignments that should be made, when the event fires. This should be a list of tuples where the first element is the name of the element to change, and the second element the assignment expression.

  • kwargs

    optional parameters, recognized are:

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)
    • ’new_name’: the new name for the event

    • ’delay’: the delay expression

    • ’priority’: the priority expression

    • ’persistent’: boolean indicating if the event is persistent

    • ’delay_calculation’: boolean indicating whether just the assignment is delayed, or the calculation as well

    • ’fire_at_initial_time’: boolean indicating if the event should fire at the initial time

Returns:

basico.model_info.set_miriam_annotation(created=None, creators=None, references=None, descriptions=None, modifications=None, replace=True, **kwargs)

Sets the MIRIAM annotations for the provided element or model

Parameters:
  • created (datetime.datetime or None) – the date/time to set as the objects creation time or None, if not to be set

  • creators (list or None) –

    None, if not to be modified, otherwise list of creators of the form:
    {
    ‘first_name’: ‘…’,
    ’last_name’: ‘…’,
    ’email’: ‘…’,
    ’organization’: ‘…’
    }

  • references (list or None) –

    None if not to be modified, otherwise list of references of the form:

    {
    ‘resource’: ‘human readable name of resource’,
    ’id’: ‘…’,
    ’uri’: ‘identifiers.org uri’,
    ’description’, ‘…’
    }

    only the uri needs to be provided, or alternatively id + resource.

  • descriptions (list or None) –

    None if not to be modified, otherwise list of descriptions of the form:

    {
    ‘resource’: ‘human readable name of resource’,
    ’id’: ‘…’,
    ’qualifier’: ‘…’,
    ’uri’: ‘identifiers.org uri’,
    }

    only the uri needs to be provided, or alternatively id + resource.

  • modifications (list or None) –

    None if not to be modified, otherwise list of datetime objects representing
    modification dates

  • replace – Boolean indicating whether existing entries should be removed.

Returns:

None

basico.model_info.set_model_name(new_name, **kwargs)

Renames the model to the provided new name

Parameters:
  • new_name (str) – the new name of the model

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.set_model_unit(**kwargs)

Sets the model units.

Parameters:

kwargs

optional parameters

  • time_unit: time unit expression
  • substance_unit or quantity_unit: substance unit expression
  • length_unit: length unit expression
  • area_unit: area unit expression
  • volume_unit: volume unit expression
  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)

basico.model_info.set_notes(notes, **kwargs)

Sets notes on the provided element

Parameters:
  • notes (str) – the notes to be set, can be either plain text, or valid xhtml

  • kwargs

    optional parameters, recognized are:

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)
    • name: the display name of the element to set the notes on.
      otherwise the main model will be taken.
    • element: any model element

Returns:

None

basico.model_info.set_parameter_set(name, exact=False, param_set_dict=None, remove_others=False, **kwargs)

sets the named parameter sets to the given dictionary values

Parameters:
  • name (str) – name of the parameter set to change (or a substring of the name)

  • exact (bool) – boolean indicating whether the name has to be exact

  • param_set_dict (dict or None) – dictionary with the parameter set values

  • remove_others (bool) – boolean indicating whether to remove entries, that are not specified in the dictionary (default: False)

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

basico.model_info.set_parameters(name=None, exact=False, **kwargs)

Sets properties of the named parameter(s).

Parameters:
  • name (str) – the name of the parameter (or a substring of the name)

  • exact (bool) – boolean indicating whether the name has to be exact or not

  • kwargs

    optional arguments

    • new_name: the new name for the parameter
    • unit: the unit expression to be set
    • initial_value: to set the initial value for the parameter
    • value: set the transient value for the parameter
    • initial_expression: the initial expression
    • status or type: the type of the parameter one of fixed, assignment or ode
    • expression: the expression for the parameter (only valid when type is ode or assignment)
    • notes: sets notes for the parameter (either plain text, or valid xhtml)
    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.set_plot_curves(plot_spec, curves, **kwargs)

Sets all curves of the named plot specification (all curves will be replaced)

Parameters:
  • plot_spec (Union[str,int,COPASI.CPlotSpecification]) – the name, index or plot specification object

  • curves ([{}]) –

    list of dictionaries of curve items to be added. For example

    [
    {
    ‘name’: ‘[Y]|[X]’, # the name of the curve
    ’type’: ‘curve2d’, # type of the curve (one of curve2d, histoItem1d, bandedGraph
    or spectogram)
    ’channels’: [‘[X]’, ‘[Y]’], # display names of all the items to be plotted
    ’color’: ‘auto’, # color as hex rgb value (i.e ‘#ff0000’ for red) or ‘auto’
    ’line_type’: ‘lines’, # the line type (one of lines, points, symbols or
    lines_and_symbols)
    ’line_subtype’: ‘solid’, # line subtype (one of solid, dotted, dashed, dot_dash or
    dot_dot_dash)
    ’line_width’: 2.0, # line width
    ’symbol’: ‘small_cross’, # the symbol to be used (one of small_cross, large_cross or circle)
    ’activity’: ‘during’ # when the data should be collected (one of ‘before’, ‘during’, ‘after’)
    }
    ]

    Additionally, histograms may have the bin size in a increment element. Spectograms can have
    log_z, color_map (one of ‘Default’, ‘Yellow-Red’, ‘Grayscale’ or ‘Blue-White-Red’),
    ’bilinear’ (should the plot interpolate between values), ‘contours’ (at which values to draw contours)
    ’max_z’ (max z value).

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.set_plot_dict(plot_spec, active=True, log_x=False, log_y=False, tasks='', **kwargs)

Sets properties of the named plot specification.

Parameters:
  • plot_spec (Union[str,int,COPASI.CPlotSpecification]) – the name, index or plot specification object

  • active (bool) – boolean indicating whether plot should be active (defaults to true)

  • log_x (bool) – boolean indicating that the x axis should be logarithmic

  • log_y (bool) – boolean indicating that the y axis should be logarithmic

  • tasks (str) –

    task type (or colon separated list of task types) for which the plot
    should be brought up

  • kwargs

    optional arguments

    • new_name: to rename the plot specification
    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)
    • curves: dictionary in the format as described in set_plot_curves().

Returns:

None

basico.model_info.set_reaction(name=None, exact=False, **kwargs)

Sets attributes of the named reaction.

Parameters:
  • name (str) – the name of the reaction (or a substring of the name)

  • exact (bool) – boolean indicating whether the name has to be exact

  • kwargs

    optional arguments

    • new_name: new name of the reaction
    • scheme: the reaction scheme, new species will be created automatically
    • function: the function from the function database to set
    • mapping: an optional dictionary that maps model elements to the function
      parameters. (can be any volume, species, modelvalue or in case of
      local parameters a value)
    • notes: sets notes for the reaction (either plain text, or valid xhtml)
    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.set_reaction_mapping(reaction, mapping, **kwargs)

Sets the reaction mapping of the parameters as specified in the mapping dictionary

Parameters:
  • reaction (str or COPASI.CReaction) – the name of the reaction (or reaction object)

  • mapping ({}) –

    dictionary that maps model elements to the function

    parameters. (can be any volume, species, modelvalue or in case of

    local parameters a value)

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

boolean indicating whether the reaction was changed

Return type:

bool

basico.model_info.set_reaction_parameters(name=None, **kwargs)

Sets local parameter values.

Parameters:
  • name (str) – the name of the parameter (or a substring of the name)

  • kwargs

    optional arguments

    • reaction_name: if specified only parameters of the named reaction will be changed
    • value: the new value of the parameter to set. (only one of value / mapped_to should be defined)
    • mapped_to: the name of a global parameter to map the local parameter to
    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.set_report_dict(spec, precision=None, separator=None, table=None, print_headers=True, header=None, body=None, footer=None, task=None, comment=None, add_separator=None, **kwargs)

Sets properties of the named report definition.

Examples:

The following would set a report definition ‘Time Course’ to include Time and the concentration of S, in a report that is separated by tabs.

>>> set_report_dict('Time Course', body=['Time', '[S]']
The following defines a report for the Steady State concentration of S. To disambiguate, that the

string ‘[S]’ in the header should be used literally, we call the function wrap_copasi_string.

>>> set_report_dict('Steady State', task=T.STEADY_STATE, header=[wrap_copasi_string('[S]')], footer=['[S]'])
Parameters:
  • spec (Union[str,int,COPASI.CReportDefinition]) – the name, index or report definition object

  • precision (Optional[int]) – number of digits to print (defaults to 6)

  • separator (Optional[str]) – the separator to use between elements (defaults to )

  • table ([str]) – a list of CNs or display names of elements to collect in a table. If table is specified the header, body, footer argument will be ignored. Note that setting table elements is only useful for tasks that generate output during the task. If that is not the case, you will have to specify the footer and header element directly.

  • print_headers (bool) – optional arguments, indicating whether table headers will be printed (only applies when the table argument is given

  • header ([str]) – a list of CNs or display names of elements to collect in the header column

  • body ([str]) – a list of CNs or display names of elements to collect in the body rows

  • footer ([str]) – a list of CNs or display names of elements to collect in the footer column

  • task (Optional[str]) –

    task name for which the report should be used

  • comment (Optional[str]) – a documentation string for the report (can bei either string, or xhtml string)

  • add_separator (Optional[bool]) – an optional boolean flag, to automatically add seprators between header, body and footer entries since this is not necessary for table entries.

  • kwargs

    optional arguments

    • new_name: to rename the report
    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.set_scheduled_tasks(task_name, **kwargs)

Sets the scheduled tasks

Only the tasks with the listed names will be set to be scheduled.

Parameters:
  • task_name (str or [str]) – name or list of names of tasks set to be scheduled

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.set_species(name=None, exact=False, **kwargs)

Sets properties of the named species

Parameters:
  • name (str) – the name of the species (or a substring of the name)

  • exact (bool) – boolean indicating, that the name has to be exact

  • kwargs

    optional arguments

    • new_name: the new name for the species
    • initial_concentration: to set the initial concentration for the species
    • initial_particle_number: to set the initial particle number for the species
    • initial_expression: the initial expression for the species
    • concentration: the new transient concentration for the species
    • particle_number: the new transient particle number for the species
    • status or type: the type of the species one of fixed, assignment or ode
    • expression: the expression for the species (only valid when type is ode or assignment)
    • notes: sets notes for the species (either plain text, or valid xhtml)
    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.set_task_settings(task, settings, **kwargs)

Applies the task settings present in the settings object

Parameters:
  • task (COPASI.CCopasiTask or str) – the task to set

  • settings (dict) – dictionary in the same format as the ones obtained from get_task_settings()

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.model_info.set_time_unit(unit, **kwargs)

Sets the time unit of the model.

Parameters:
  • unit (str) – the time unit expression

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

basico.model_info.set_value(name_or_reference, new_value, initial=False, **kwargs)

Gets the value of the named element or nones

Parameters:
  • name_or_reference (str or COPASI.CDataObject) – display name of model element

  • new_value (float) – the new value to set

  • initial (bool or None) – if True, an initial value will be set, rather than a transient one. If set to None, the default reference will be returned and not coerced.

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

the value if found or None

Return type:

float or None

basico.model_info.simplify_names(**kwargs)

Simplifies the names of the model elements by removing all special characters and replacing them with underscores

Parameters:

kwargs

  • model: the model to simplify

  • drop: a list of substrings to drop from the names

Returns:

None

basico.model_info.update_miriam_resources()

This method downloads the latest miriam resources from the COPASI website and stores the configuration

basico.model_info.update_parameter_set(name, exact=False, **kwargs)

Updates the specified parameter set with values from the model

Parameters:
  • name – the name of the parameter set or a substring of the name

  • exact – boolean indicating whether the name has to match exactly

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

basico.model_info.wrap_copasi_string(text)

Utility function wrapping the given text into a COPASI string

Parameters:

text – the text to wrap

Returns:

an escaped COPASI string, that can be used in reports

basico.model_io module

This module hosts all method for loading/saving new models.

All methods for loading / saving a new model are within this module. As well as the functionality to get/set the currently loaded model. Whenever a function needs the currently loaded model, and no model was provided in the kwargs, the get_current_model() function retrieves the model loaded last. There are also convenience methods to load models directly from BioModels or from url.

basico.model_io.create_datamodel()

creates a new data model

Returns:

new data model

Return type:

COPASI.CDataModel

basico.model_io.get_current_model()

Returns the current model.

This function returns the current model. That is the model loaded / created last. If no model exists a new one will be created first.

Returns:

the current model

Return type:

COPASI.CDataModel

basico.model_io.get_examples(selector='')

Returns the filenames of examples bundled with this version.

A number of example models are included with the distribution. This method returns the filenames to those examples. Filtered by the argument.

Parameters:

selector (str) – a filter expression to be used, only files matching *{selector}.[cps|xml] will be returned

Returns:

the list of examples matching

Return type:

[str]

basico.model_io.get_model_from_dict_or_default(d, key='model')

Convenience function returning the data model from the dictionary

Parameters:
  • d – the dictionary optionally containing the data model

  • key – the key that the model is under (defaults to ‘model’)

Returns:

the data model if found, or the one from get_current_model()

Return type:

COPASI.CDataModel

basico.model_io.get_num_loaded_models()
Returns:

the number of loaded models

basico.model_io.import_sbml(filename_or_content, annotations_to_remove=None, remove_user_defined_functions=False)

Imports an SBML model and optionally removes custom annotations

Parameters:
  • filename_or_content (str) – either a filename, or a string containing the SBML model

  • annotations_to_remove – optional list with tuples containing element name

and namespace of the annotations to remove :type annotations_to_remove: [(str, str)]

Returns:

the loaded model

Return type:

COPASI.CDataModel

basico.model_io.load_biomodel(model_id, remove_user_defined_functions=False)

Loads a model from the BioModels Database.

Parameters:
  • model_id (Union[int,str]) – either an integer of the biomodels id, or a valid biomodels id

  • remove_user_defined_functions (bool) – optional flag, indicating that user defined functions should be removed before loading the model. Since function definitions are global, this can be helpful to ensure that function names remain the same as in the loaded file. (default: False)

Returns:

Return type:

COPASI.CDataModel

basico.model_io.load_example(selector)

Loads the example matching the selector.

Parameters:

selector (str) – the filter expression to use for the examples see get_examples()

Returns:

the loaded model, or None, if none matched

Return type:

COPASI.CDataModel or None

basico.model_io.load_model(location, remove_user_defined_functions=False)

Loads the model and sets it as current

Parameters:
  • location (str) – either a filename, url or raw string of a COPASI / SBML model

  • remove_user_defined_functions (bool) – optional flag, indicating that user defined functions should be removed before loading the model. Since function definitions are global, this can be helpful to ensure that function names remain the same as in the loaded file. (default: False)

Returns:

the loaded model

Return type:

COPASI.CDataModel

basico.model_io.load_model_from_string(content)

Loads either COPASI model / SBML model from the raw string given.

Parameters:

content (str or bytes) – the copasi / sbml model serialized as string

Returns:

the loaded model

Return type:

COPASI.CDataModel

basico.model_io.load_model_from_url(url)

Loads either COPASI model / SBML model from the url.

Parameters:

url (str) – url to a copasi / sbml model

Returns:

the loaded model

Return type:

COPASI.CDataModel

basico.model_io.new_model(**kwargs)

Creates a new model and sets it as current.

Parameters:

kwargs – optional arguments

  • name (str): the name for the new model

  • quantity_unit (str): the unit to use for species

  • time_unit (str): the time unit to use

  • volume_unit (str): the unit to use for 3D compartments

  • area_unit (str): the unit to use for 2D compartments

  • length_unit (str): the unit to use for 1D compartments

  • remove_user_defined_functions (bool): whether to remove user defined functions when creating the model

  • notes: sets notes for the model (either plain text, or valid xhtml)
Returns:

the new model

Return type:

COPASI.CDataModel

basico.model_io.open_copasi(filename='', **kwargs)

Saves the model as COPASI file and opens it in COPASI.

The file will be written to a temporary file, and then it will be executed, so that the application registered to open it will start.

Parameters:
  • filename (str) – the file name to write to, if not given a temp file will be created that will be deleted at the end of the python session.

  • kwargs – optional arguments:

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

None

basico.model_io.overview(model=None)

Returns a basic representation of the model.

Parameters:

model (COPASI.CDataModel or None) – the model to get the overview for

Returns:

a string, consisting of name, # compartments, # species, # parameters, # reaction

Return type:

str

basico.model_io.print_model(model=None)

Prints the model overview.

See also overview()

Parameters:

model (COPASI.CDataModel) – the model

Returns:

None

basico.model_io.remove_annotations(content, annotations)

Removes annotations from an SBML model string

Parameters:
  • content (str or bytes) – the SBML model as string

  • annotations ([(str, str)]) – list with tuples containing element name and namespace of the annotations to remove

Returns:

the SBML model with the annotations removed

basico.model_io.remove_datamodel(model)

Removes the model from the internal list of loaded models.

The model is removed from the list of models, and current model, before it is freed

Parameters:

model – the model to be removed

:type model:COPASI.CDataModel :return: None

basico.model_io.remove_loaded_models()

Removes all loaded models

Returns:

None

basico.model_io.save_model(filename, **kwargs)

Saves the model to the given filename.

Parameters:
  • filename (str) – the file to be written

  • kwargs – optional arguments:

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • type (str): copasi to write COPASI files, sbml to write SBML files (defaults to copasi), sedml to write SED-ML files, omex to write a COMBINE archive

  • overwrite (bool): whether the file should be overwritten if present (defaults to True)

  • sbml_level (int): SBML level to export

  • sbml_version (int): SBML version to export

  • sedml_level (int): SEDML level to export

  • sedml_version (int): SEDML version to export

  • export_copasi_miriam (bool): whether to export copasi miriam annotations

  • export_incomplete (bool): whether to export incomplete SBML model

  • include_copasi (bool): whether to include the COPASI file in the COMBINE archive (defaults to True)

  • include_data (bool): whether to include the data file in the COMBINE archive (defaults to True)

  • include_sbml (bool): whether to include the SBML file in the COMBINE archive (defaults to True)

  • include_sedml (bool): whether to include the SED-ML file in the COMBINE archive (defaults to False)

Returns:

None

basico.model_io.save_model_and_data(filename, **kwargs)

Saves the model to the give filename, along with all experimental data files.

Parameters:
  • filename – the filename of the COPASI file to write

  • filename – str

  • kwargs – optional arguments:

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • delete_data_on_exit (bool): a flag indicating whether the files should be deleted at the end of the
    python session (defaults to False)
Returns:

None

basico.model_io.save_model_to_string(**kwargs)

Saves the current model to string

Parameters:

kwargs – optional arguments:

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • type (str): copasi to write COPASI files, sbml to write SBML files (defaults to copasi), sedml to write SED-ML files

  • sbml_level (int): SBML level to export

  • sbml_version (int): SBML version to export

  • sedml_level (int): SEDML level to export

  • sedml_version (int): SEDML version to export

Returns:

the copasi model as string

Return type:

str

basico.model_io.set_current_model(model)

Sets the current model.

The current model, is the one that all functions will use if not is provided explicitly.

Parameters:

model (COPASI.CDataModel) – the model to be set as current

Returns:

the model

Return type:

COPASI.CDataModel

basico.task_parameterestimation module

Submodule with utility methods for carrying out and plotting of parameter estimations.

The main function provided by this submodule is run_parameter_estimation(). Without any parameters, the previously set up parameter estimation as stored in the file will be carried out. And the parameters found will be returned.

It is also possible to set up parameter estimation problems from scratch. To make it as simple as possible, pandas data frames are used, the mapping from the columns to the model element will be done implicitly by naming the columns like the corresponding model elements.

Example

>>> from basico import *
>>> m = model_io.load_example("LM-test1")
>>> print(get_fit_parameters())
>>> print(get_parameters_solution())
>>> run_parameter_estimation(method='Levenberg - Marquardt')
>>> print(get_parameters_solution())
class basico.task_parameterestimation.PE

Bases: object

Constants for Parameter estimation method names

Convert between method names to enums

>>> PE.from_enum(0)
'Current Solution Statistics'
>>> PE.to_enum('Current Solution Statistics')
17
CURRENT_SOLUTION = 'Current Solution Statistics'
DIFFERENTIAL_EVOLUTION = 'Differential Evolution'
EVOLUTIONARY_PROGRAMMING = 'Evolutionary Programming'
EVOLUTIONARY_STRATEGY_SRES = 'Evolution Strategy (SRES)'
GENETIC_ALGORITHM = 'Genetic Algorithm'
GENETIC_ALGORITHM_SR = 'Genetic Algorithm SR'
HOOKE_JEEVES = 'Hooke & Jeeves'
LEVENBERG_MARQUARDT = 'Levenberg - Marquardt'
NELDER_MEAD = 'Nelder - Mead'
NL2SOL = 'NL2SOL'
PARTICLE_SWARM = 'Particle Swarm'
PRAXIS = 'Praxis'
SIMULATED_ANNEALING = 'Simulated Annealing'
STEEPEST_DESCENT = 'Steepest Descent'
TRUNCATED_NEWTON = 'Truncated Newton'
classmethod all_method_names()
classmethod from_enum(int_value)
classmethod to_enum(value)
basico.task_parameterestimation.add_experiment(name, data, **kwargs)

Adds a new experiment to the model.

This method adds a new experiment file to the parameter estimation task. The provided data frame will be written into the current directory as experiment_name.txt unless a filename has been provided.

The mapping between the columns and the model elements should be done by having the columns of the data frame be model element names in question. So for example [A] to note that the transient concentrations of a species A is to be mapped as dependent variable. or [A]_0 to note that the initial concentration of a species A is to be mapped as independent variable.

Parameters:
  • name (str) – the name of the experiment

  • data (pandas.DataFrame) – the data frame with the experimental data

  • kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • file_name (str): the file name to save the experimental data to (otherwise it will be name.txt)
  • data_dir (str): the directory to save the experimental data to (otherwise it will be the current directory)
Returns:

the filename of the generated data file

Return type:

str

basico.task_parameterestimation.add_experiment_from_dict(exp_dict, **kwargs)

Adds an experiment from dictionary

Parameters:

exp_dict

Returns:

basico.task_parameterestimation.get_data_from_experiment(experiment, **kwargs)

Returns the data of the given experiment as dataframe

Parameters:
  • experiment – the experiment

  • kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • rename_headers (bool): if true (default) the columns of the headers will be renamed
    with the names of the element it is mapped to. Also all ignored columns will be removed from the
    dataset
Returns:

dataframe with experimental data

Return type:

pandas.DataFrame

basico.task_parameterestimation.get_experiment(experiment, **kwargs)

Returns the specified experiment.

Parameters:
  • experiment (int or str or COPASI.CExperiment) – experiment name or index

  • kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

the experiment or an error if none existent

basico.task_parameterestimation.get_experiment_data_from_model(model=None)

Returns all experimental data from the model

Parameters:

model (COPASI.CDataModel or None) – the model to get the data from

Returns:

list of dataframes with experimental data (with columns renamed and unmapped columns dropped)

Return type:

[pandas.DataFrame]

basico.task_parameterestimation.get_experiment_dict(experiment, **kwargs)

Returns all information about the experiment as dictionary

Parameters:
  • experiment – copasi experiment, experiment name or index

  • kwargs – optional arguments

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • raise_error: boolean indicating that an error should be raised if the
    experimentfile is not present (default: False)
  • return_relative: to indicate that relative experiment filenames should
    be returned (default: True)
Returns:

all information about the experiment as dictionary

basico.task_parameterestimation.get_experiment_filenames(model=None)

Returns filenames of all experiments

Parameters:

model (COPASI.CDataModel or None) – the model to get the data from

Returns:

list of filenames of experimental data

Return type:

[str]

basico.task_parameterestimation.get_experiment_mapping(experiment, **kwargs)

Retrieves a data frame of the experiment mapping.

The resulting data frame will have the columns: * column (int): index of the column in the file * type (str): ‘time’, ‘dependent’, ‘indepenent’ or ‘ignored’ * ‘mapping’ (str): the name of the element it is mapped to * ‘cn’ (str): internal identifier

Parameters:
  • experiment – the experiment to get the mapping from

  • kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

data frame with the mapping as described

Return type:

pandas.DataFrame

basico.task_parameterestimation.get_experiment_names(**kwargs)

Returns the list of experiment names

Parameters:

kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

list of experiment names defined

Return type:

[str]

basico.task_parameterestimation.get_fit_constraints(model=None)

Returns a data frame with all fit constraints

The resulting dataframe will have the following columns:

  • name: the name of the fit parameter

  • lower: the lower bound of the parameter

  • upper: the upper bound of the parameter

  • start: the start value

  • affected: a list of all experiments (names) the fit parameter should apply to. If empty the parameter should
    be varied for all experiments.
  • cn: internal identifier

Parameters:

model (COPASI.CDataModel or None) – the model to get the fit parameters from

Returns:

data frame with the fit parameters

Return type:

pandas.DataFrame

basico.task_parameterestimation.get_fit_item_template(include_local=False, include_global=False, default_lb=0.001, default_ub=1000, model=None)

Returns a template list of items to be used for the parameter estimation

Parameters:
  • include_local (bool) – boolean, indicating whether to include local parameters

  • include_global (bool) – boolean indicating whether to include global parameters

  • default_lb (float) – default lower bound to be used

  • default_ub (float) – default upper bound to be used

  • model (COPASI.CDataModel or None) – the model or None

Returns:

List of dictionaries, with the local / global parameters in the format needed by: set_fit_parameters().

Return type:

[{}]

basico.task_parameterestimation.get_fit_parameters(model=None)

Returns a data frame with all fit parameters

The resulting dataframe will have the following columns:

  • name: the name of the fit parameter

  • lower: the lower bound of the parameter

  • upper: the upper bound of the parameter

  • start: the start value

  • affected: a list of all experiments (names) the fit parameter should apply to. If empty the parameter should
    be varied for all experiments.
  • cn: internal identifier

Parameters:

model (COPASI.CDataModel or None) – the model to get the fit parameters from

Returns:

data frame with the fit parameters

Return type:

pandas.DataFrame

basico.task_parameterestimation.get_fit_statistic(include_parameters=False, include_experiments=False, include_fitted=False, **kwargs)

Return information about the last fit.

Parameters:
  • include_parameters (bool) – whether to include information about the parameters in a result entry with key parameters

  • include_experiments (bool) – whether to include information about the experiments in a result entry with key experiments

  • include_fitted (bool) – whether to include information about the fitted values in a result entry with key fitted

  • kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

dictionary with the fit statistic

Return type:

{}

basico.task_parameterestimation.get_parameters_solution(model=None)

Returns the solution found for the fit parameters as data frame

The resulting data frame will have the columns:

  • name: the name of the parameter

  • lower: the parameters lower bound

  • upper: the parameters upper bound

  • sol: the solution found in the last run (or NaN, if not run yet, or no solution found)

  • affected: the experiments this parameter applies to (or an empty list if it applies to all)

Parameters:

model (COPASI.CDataModel or None) – the model to use, or None

Returns:

data frame as described

Return type:

pandas.DataFrame

basico.task_parameterestimation.get_simulation_results(values_only=False, update_parameters=True, **kwargs)

Runs the current solution statistics and returns result of simulation and experimental data

Parameters:
  • values_only (bool) – if true, only time points at the measurements will be returned

  • update_parameters (bool) – if set true, the model will be updated with the parameters found from the solution. (defaults to True)

  • kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • solution: a solution data frame to use, if not specified a current solution statistic will be computed
Returns:

tuple of lists of experiment data, and a list of simulation data

Return type:

([pandas.DataFrame],[pandas.DataFrame])

basico.task_parameterestimation.load_experiments_from_dict(experiments, **kwargs)

Loads all experiments from the specified experiment description

All existing experiments will be replaced with the ones from the specified file.

Parameters:
  • experiments – list of experiment dictionaries

  • kwargs – optional arguments

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

basico.task_parameterestimation.load_experiments_from_yaml(experiment_description, **kwargs)

Loads all experiments from the specified experiment description

All existing experiments will be replaced with the ones from the specified file.

Parameters:
  • experiment_description – filename or yamlstring

  • kwargs – optional arguments

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

basico.task_parameterestimation.num_experiment_files(**kwargs)

Return the number of experiment files defined.

Parameters:

kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

number of experiment files

Return type:

int

basico.task_parameterestimation.num_validations_files(**kwargs)

Returns the number of cross validation experiment files

Parameters:

kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

number of cross validation experiment files

Return type:

int

basico.task_parameterestimation.plot_per_dependent_variable(**kwargs)

This function creates a figure for each dependent variable, with traces for all experiments.

Parameters:

kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

array of tuples (fig, ax) for each figure created

basico.task_parameterestimation.plot_per_experiment(**kwargs)

This function creates one figure per experiment defined, with plots of all dependent variables and their fit in it.

Parameters:

kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

array of tuples (fig, ax) for the figures created

basico.task_parameterestimation.prune_simulation_results(simulation_results)

Removes all columns & time points from the simulation set, that are not available in the measurement set

Parameters:

simulation_results – the simulation result as obtained by get_simulation_results

Returns:

basico.task_parameterestimation.remove_experiments(**kwargs)

Removes all experiments from the model

Parameters:

kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

None

basico.task_parameterestimation.remove_fit_parameters(**kwargs)

Removes all fit items

Parameters:

kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

None

basico.task_parameterestimation.run_parameter_estimation(**kwargs)

Runs the parameter estimation task as specified:

The following are valid methods to be used for the parameter estimation task.

Current Solution:

  • Current Solution Statistics,

Global Methods:

  • Random Search,

  • Simulated Annealing,

  • Differential Evolution,

  • Scatter Search,

  • Genetic Algorithm,

  • Evolutionary Programming,

  • Genetic Algorithm SR,

  • Evolution Strategy (SRES),

  • Particle Swarm,

Local Methods:

  • Levenberg - Marquardt,

  • Hooke & Jeeves,

  • Nelder - Mead,

  • Steepest Descent,

  • NL2SOL,

  • Praxis,

  • Truncated Newton,

Parameters:

kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • method (str): one of the strings from above
  • randomize_start_values (bool): if true, parameters will be randomized before starting otherwise the
    parameters starting value will be taken.
  • calculate_statistics (bool): if true, the statistics will be calculated at the end of the task
  • create_parametersets (bool): if true, parameter sets will be created for all experiments
  • use_initial_values (bool): whether to use initial values

  • scheduled (bool): sets whether the task is scheduled or not

  • update_model (bool): sets whether the model should be updated, or reset to initial conditions.

  • settings (dict): a dictionary with settings to use, in the same format as the ones obtained from

    get_task_settings()

  • write_report (bool): overrides the writing of a report file of filename is specified. (defaults to True)

Returns:

the solution for the fit parameters see get_parameters_solution().

Return type:

pandas.DataFrame

basico.task_parameterestimation.save_experiments_to_dict(**kwargs)

Returns a list of dictionaries with the parameter estimation experiments

Parameters:

kwargs – optional arguments

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • raise_error: boolean indicating that an error should be raised if the
    experimentfile is not present (default: False)
  • return_relative: to indicate that relative experiment filenames should
    be returned (default: True)
Returns:

the parameter estimation experimetns as list of dictionary

Return type:

[{}]

basico.task_parameterestimation.save_experiments_to_yaml(filename=None, **kwargs)

Saves the experiment to yaml

Parameters:
  • filename – optional filename to write to

  • kwargs – optional arguments

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

the yaml string

basico.task_parameterestimation.set_fit_constraints(fit_constraints, model=None)

Replaces all existing fit constraints with the ones provided

Parameters:
  • fit_constraints (pandas.DataFrame or [{}]) –

    the fit parameters as pandas data frame of list of dictionaries with keys:

    • ’name’ str: the display name of the model element to map the column to.

    • ’lower’: the lower bound of the parameter

    • ’upper’: the upper bound of the parameter

    • ’start’ (float, optional): the start value

    • ’affected’ (list[str], optional): a list of affected experiment names.

    • ’cn’ (str, optional): internal identifier

  • model (COPASI.CDataModel or None) – the model or None

Returns:

None

basico.task_parameterestimation.set_fit_parameters(fit_parameters, model=None)

Replaces all existing fit items with the ones provided

Parameters:
  • fit_parameters (pandas.DataFrame or [{}]) –

    the fit parameters as pandas data frame of list of dictionaries with keys:

    • ’name’ str: the display name of the model element to map the column to.

    • ’lower’: the lower bound of the parameter

    • ’upper’: the upper bound of the parameter

    • ’start’ (float, optional): the start value

    • ’affected’ (list[str], optional): a list of affected experiment names.

    • ’cn’ (str, optional): internal identifier

  • model (COPASI.CDataModel or None) – the model or None

Returns:

None

basico.task_steadystate module

This module is concerned with brining the model to steady state.

The run_steadystate() method brings the currently loaded model to steady state supporting a number of parameters you could set. Once done, additional calls to functions like get_species() or get_reactions() will contain the steady state values.

Example

>>> run_steadystate()
>>> get_species()
basico.task_steadystate.run_steadystate(**kwargs)

Brings the model to steady state.

The function will use the get_current_model() unless one is provided.

Parameters:

kwargs

optional arguments:

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • use_initial_values (bool): whether to use initial values

  • scheduled (bool): sets whether the task is scheduled or not

  • update_model (bool): sets whether the model should be updated, or reset to initial conditions.

  • criterion (str): specifies the acceptance criterion to be used for a steady state can be one of:

    * Distance and Rate: both the Distance and the Rate criterion have to be fulfilled to accept
    * Distance: the distance criterion
    * Rate: the rate of change has to be sufficiently small
  • settings (dict): a dictionary with settings to use, in the same format as the ones obtained from

    get_task_settings()

Returns:

integer status information whether the steady state was reached:

  • 0: not found

  • 1: steady state found

  • 2: equillibrium steady state found

  • 3: steady state with negative concentrations found

Return type:

int

basico.task_timecourse module

This module encapsulates methods for running time course simulations.

main method provided is the run_time_course() method, that will simulate the given model (or the current get_current_model()).

Examples

To run a time course for the duration of 10 time units use

>>> run_time_course(10)

To run a time course for the duration of 10 time units, in 50 simulation steps use

>>> run_time_course(10, 50)

To run a time course from 0, for the duration of 10 time units, in 50 simulation steps use:

>>> run_time_course(0, 10, 50)

all parameters can also be given as key value pairs.

basico.task_timecourse.create_data_handler(output_selection, during=None, after=None, before=None, model=None)

Creates an output handler for the given selection

Parameters:
  • output_selection ([str]) – list of display names or cns, of elements to capture

  • during ([str]) – optional list of elements from the output selection, that should be collected during the run of the task

  • after ([str]) – optional list of elements from the output selection, that should be collected after the run of the task

  • before ([str]) – optional list of elements from the output selection, that should be collected before the run of the task

  • model – the model in which to resolve the display names

Returns:

tuple of the data handler from which to retrieve output later, and their columns

Return type:

(COPASI.CDataHandler, [])

basico.task_timecourse.get_data_from_data_handler(dh, columns)
basico.task_timecourse.run_time_course(*args, **kwargs)

Simulates the current or given model, returning a data frame with the results

Parameters:
  • args

    positional arguments

    • 1 argument: the duration to simulate the model

    • 2 arguments: the duration and number of steps to take

    • 3 arguments: start time, duration, number of steps

  • kwargs

    additional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)
    • use_initial_values (bool): whether to use initial values

    • scheduled (bool): sets whether the task is scheduled or not

    • update_model (bool): sets whether the model should be updated, or reset to initial conditions.

    • method (str): sets the simulation method to use (otherwise the previously set method will be used)
      support methods:

      * deterministic / lsoda: the LSODA implementation
      * stochastic: the Gibson & Bruck Gillespie implementation
      * directMethod: Gillespie Direct Method
      * others: hybrid, hybridode45, hybridlsoda, adaptivesa, tauleap, radau5, sde
    • duration (float): the duration in time units for how long to simulate

    • automatic (bool): whether to use automatic determined steps (True), or the specified interval / number of steps

    • output_event (bool): if true, output will be collected at the time a discrete event occurs.

    • values ([float]): if given, output will only returned at the output points specified
      for example use values=[0, 1, 4] to return output only for those three times
    • start_time (float): the output start time. If the model is not at that start time, a simulation
      will be performed in one step, to reach it before starting to collect output.
    • step_number or intervals (int): the number of output steps. (will only be used if automatic
      or stepsize is not used.
    • stepsize (float): the output step size (will only be used if automatic is False).
    • seed (int): set the seed that will be used if use_seed is true, using this stochastic trajectories can
      be repeated
    • ’use_seed’ (bool): if true, the specified seed will be used.
    • a_tol (float): the absolute tolerance to be used
    • r_tol (float): the relative tolerance to be used
    • max_steps (int): the maximum number of internal steps the integrator is allowed to use.
    • use_concentrations (bool): whether to return just the concentrations (default)
    • use_numbers (bool): return all elements collected

Returns:

data frame with simulation results

Return type:

pandas.DataFrame

basico.task_timecourse.run_time_course_with_output(output_selection, *args, **kwargs)

Simulates the current model, returning only the data specified in the output_selection array

Parameters:
  • output_selection – selection of elements to return, for example [‘Time’, ‘[ATP]’, ‘ATP.Rate’] to return the time column, ATP concentration and the rate of change of ATP. The strings can be either the Display names as can be found in COPASI, or the CN’s of the elements.

  • args

    positional arguments

    • 1 argument: the duration to simulate the model

    • 2 arguments: the duration and number of steps to take

    • 3 arguments: start time, duration, number of steps

  • kwargs

    additional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)
    • use_initial_values (bool): whether to use initial values

    • scheduled (bool): sets whether the task is scheduled or not

    • update_model (bool): sets whether the model should be updated, or reset to initial conditions.

    • method (str): sets the simulation method to use (otherwise the previously set method will be used)
      support methods:

      * deterministic / lsoda: the LSODA implementation
      * stochastic: the Gibson & Bruck Gillespie implementation
      * directMethod: Gillespie Direct Method
      * others: hybrid, hybridode45, hybridlsoda, adaptivesa, tauleap, radau5, sde
    • duration (float): the duration in time units for how long to simulate

    • automatic (bool): whether to use automatic determined steps (True), or the specified interval / number of steps

    • output_event (bool): if true, output will be collected at the time a discrete event occurs.

    • values ([float]): if given, output will only returned at the output points specified
      for example use values=[0, 1, 4] to return output only for those three times
    • start_time (float): the output start time. If the model is not at that start time, a simulation
      will be performed in one step, to reach it before starting to collect output.
    • step_number or intervals (int): the number of output steps. (will only be used if automatic
      or stepsize is not used.
    • stepsize (float): the output step size (will only be used if automatic is False).
    • seed (int): set the seed that will be used if use_seed is true, using this stochastic trajectories can
      be repeated
    • ’use_seed’ (bool): if true, the specified seed will be used.
    • a_tol (float): the absolute tolerance to be used
    • r_tol (float): the relative tolerance to be used
    • max_steps (int): the maximum number of internal steps the integrator is allowed to use.

basico.task_scan module

Utility functions for dealing with scan tasks

While usually it is easier to encode scan functionality directly in python code, the utility methods here make it easy to set up scan tasks as supported by COPASI directly. That way they can be carried out from the command line version of COPASI, or from the graphical user interface.

basico.task_scan.add_scan_item(**kwargs)

Adds the scan item to the model

Parameters:

kwargs

optional parameters

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • type (str): the type for the scan item can be one of scan,
    repeat, random or parameter_set. If not specified scan will be used.
  • cn (str): the cn of the element to use in the scan item (use when
    no suitable display names for the item you are interested in exist)
    if you specify cn, don’t use the item optional paramter
  • item (str): the display name of the item you want to use, for example
    [Signal]_0 for the initial concentration of species Signal, or
    (r1).k for the local parameter k of reaction r1.
  • values(str or [float]): if you want to scan over specific values,
    rather than a range, specify them here e.g.: [0.1, 0.5, 1, 2]. Using
    this parameter also sets use_values to True
  • parameter_sets([str]): if you want to scan over parameter sets, add the
    list of parameter set names here.
  • use_values (bool): indicates that the values specified should be used
    rather than the min / max range
  • num_steps (int): the number of steps in the range of [min, max] or the
    number of repeats.
  • min (float): minimum value for the range or first distribution parameter
  • max (float): maximum value for the range, or the 2nd distributon parameter
  • log (bool): boolean indicating that the range should be used logarithmically.
  • distribution (str): one of uniform, normal, poisson or gamma

Returns:

basico.task_scan.get_scan_items(**kwargs)

Retrieves the scan items specified on the scan task:

>>> get_scan_items()
[
   {
     'type': 'scan',
     'num_steps': 10,
     'log': False,
     'min': 0.5,
     'max': 2.0,
     'item': '(R1).k1',
   }
]
Parameters:

kwargs

optional parameters

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)

Returns:

array of dictionary with the scan items specified

Return type:

[{}]

basico.task_scan.get_scan_items_frame(**kwargs)

Returns all the scan items as pandas DataFrame

Parameters:

kwargs

optional parameters

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)

Returns:

data frame of scan items

basico.task_scan.get_scan_settings(**kwargs)

Returns the scan settings as dictionary

>>> get_scan_settings()
{
    'update_model': False,
    'scheduled': False,
    'subtask': 'Steady-State',
    'output_during_subtask': False,
    'output_specification': [],
    'continue_from_current_state': False,
    'continue_on_error': False,
    'scan_items': [ ... ]
}
Parameters:

kwargs – optional parameters

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

dictionary of scan settings

Return type:

{}

basico.task_scan.run_scan(**kwargs)

Runs the scan task

Parameters:

kwargs

optional parameters

  • settings: optional dictionary with the scan settings
  • scan_items: a list of scan items see set_scan_items()
  • output ([(str)]): optional list of cns or display names, of elements
    to collect in the scan.
  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)

Returns:

None if output is not specified, otherwise the collected output as dataframe.

Return type:

None or pd.DataFrame

basico.task_scan.set_scan_items(scan_items, **kwargs)

Replaces the scan items in the task, with the scan items passed in

If you just wanted to change a specific entry, you could would retrieve the current set of scan items, make the change and then set them again:

>>> scan_items = get_scan_items()

the list of scan items is returned as array of dictionary items, and can be freely modified (say change the number of steps of the first item to a new value), or add new entries, remove some

>>> scan_items[0]['num_steps'] = 20

Finally a call to scan items, will replace the ones in the model with the ones from the array.

>>> set_scan_items(scan_items)
Parameters:
  • scan_items ([{}]) – list of dictionaries as returned by get_scan_items().

  • kwargs

    optional parameters

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None

basico.task_scan.set_scan_settings(**kwargs)

Changes the scan settings

Parameters:

kwargs

optional parameters

  • settings: dictionary with the scan settings

  • subtask: sub task name

  • output_during_subtask: boolean, indicating whether ouput should be collected during the subtask execution it is set to True, if output_specification is set to ‘During’ and False otherwise

  • output_specification: list of strings, indicating when output should be collected (‘Before’, ‘During’, ‘After’)

  • continue_from_current_state: boolean indicating, whether the subtask should be reset to initial values (False)

    or not (True)

  • continue_on_error: boolean indicating, whether executions should continue, in case one subtask execution failed (True) or not.

  • scan_items: a list of scan items see set_scan_items()

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)

Returns:

basico.task_optimization module

Submodule with utility methods for setting up and carrying out optimization tasks.

The main function provided by this submodule is run_optimization(). Without any parameters, the previously set up parameter estimation as stored in the file will be carried out. And the parameters found will be returned.

Example

Create an optimization problem

>>> from bascio import *
>>> new_model(name='Square')
>>> add_parameter('x', initial_value=0)
>>> add_parameter('y', initial_value=0)
>>> add_parameter('f', type='assignment',
...                    expression='(1+{Values[x].InitialValue})^2+(1 + {Values[y].InitialValue})^2')

Setup the optimization

>>> set_opt_settings({
...       'expression': 'Values[f].InitialValue',
...       'subtask': T.TIME_COURSE,
...       'method': {'name': PE.LEVENBERG_MARQUARDT}
... })

Specifiy which paramters to vary:

>>> set_opt_parameters(get_opt_item_template(include_global=True))

Run the optimization

>>> run_optimization()

Get statistic, to see how good the fit was:

>>> get_opt_statistic()
basico.task_optimization.get_opt_constraints(model=None)

Returns a data frame with all constraints to be adhered to during optimization

The resulting dataframe will have the following columns:

  • name: the name of the fit parameter

  • lower: the lower bound of the parameter

  • upper: the upper bound of the parameter

  • start: the start value

  • cn: internal identifier

Parameters:

model (COPASI.CDataModel or None) – the model to get the optitems from

Returns:

data frame with the constraints

Return type:

pandas.DataFrame

basico.task_optimization.get_opt_item_template(include_local=False, include_global=False, default_lb=0.001, default_ub=1000, model=None)

Returns a template dictionary with optimization items

Parameters:
  • include_local (bool) – boolean, indicating whether to include local parameters

  • include_global (bool) – boolean indicating whether to include global parameters

  • default_lb (float) – default lower bound to be used

  • default_ub (float) – default upper bound to be used

  • model (COPASI.CDataModel or None) – the model or None

Returns:

List of dictionaries, with the local / global parameters in the format needed by: set_opt_parameters().

Return type:

[{}]

basico.task_optimization.get_opt_parameters(model=None)

Returns a data frame with all parameters to be varied during optimization

The resulting dataframe will have the following columns:

  • name: the name of the fit parameter

  • lower: the lower bound of the parameter

  • upper: the upper bound of the parameter

  • start: the start value

  • cn: internal identifier

Parameters:

model (COPASI.CDataModel or None) – the model to get the optitems from

Returns:

data frame with the fit parameters

Return type:

pandas.DataFrame

basico.task_optimization.get_opt_settings(model=None, basic_only=True)

Returns a dictionary with the optimization setup

The result int dictionary includes the objective function, and the subtask.

Parameters:
  • model – the model or None for the current one

  • basic_only (bool) – boolean flag indicating whether only basic settings should be returned

Returns:

dictionary with settings

basico.task_optimization.get_opt_solution(model=None)

Returns the solution found for the optimization parameters as data frame

The resulting data frame will have the columns:

  • name: the name of the parameter

  • lower: the parameters lower bound

  • upper: the parameters upper bound

  • sol: the solution found in the last run (or NaN, if not run yet, or no solution found)

Parameters:

model (COPASI.CDataModel or None) – the model to use, or None

Returns:

data frame as described

Return type:

pandas.DataFrame

basico.task_optimization.get_opt_statistic(**kwargs)

Return information about the last optimization run.

Parameters:

kwargs

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
Returns:

dictionary with the statistic

Return type:

{}

basico.task_optimization.run_optimization(expression=None, output=None, settings=None, **kwargs)

Runs the optimization

Parameters:
  • expression – optional objective function to be used

  • settings – optional settings dictionary

  • output – optional list of output to collect

  • kwargs – optional arguments

Returns:

pandas data frame of the specified output, or the resulting solution for the parameters

basico.task_optimization.set_objective_function(expression, maximize=None, minimize=None, model=None)

Sets the objective function to be used

Parameters:
  • expression – the expression to be used as objective function, it can contain any display names of model elements. So for example to minimize an initial value of a global parameter x the expression would look like Values[x].InitialValue.

  • maximize – optional boolean indicating whether the expression should be maximized

  • minimize – optional boolean indicating whether the expression should be minimized

  • model – the model to be used or None

Returns:

None

basico.task_optimization.set_opt_constraints(opt_constraints, model=None)

Replaces all existing opt constraints with the ones provided

Parameters:
  • opt_constraints (pandas.DataFrame or [{}]) –

    the optimization parameters as pandas data frame of list of dictionaries with keys:

    • ’name’ str: the display name of the model element to map the column to.

    • ’lower’: the lower bound of the parameter

    • ’upper’: the upper bound of the parameter

    • ’start’ (float, optional): the start value

    • ’cn’ (str, optional): internal identifier

  • model (COPASI.CDataModel or None) – the model or None

Returns:

None

basico.task_optimization.set_opt_parameters(opt_parameters, model=None)

Replaces all existing opt items with the ones provided

Parameters:
  • opt_parameters (pandas.DataFrame or [{}]) –

    the optimization parameters as pandas data frame of list of dictionaries with keys:

    • ’name’ str: the display name of the model element to map the column to.

    • ’lower’: the lower bound of the parameter

    • ’upper’: the upper bound of the parameter

    • ’start’ (float, optional): the start value

    • ’cn’ (str, optional): internal identifier

  • model (COPASI.CDataModel or None) – the model or None

Returns:

None

basico.task_optimization.set_opt_settings(settings, model=None)

Changes the optimization setup

Parameters:
  • settings – a dictionary as returned by get_opt_parameters()

  • model – the model to be used, nor None

Returns:

basico.task_sensitivities module

Utility methods for working with the sensitivity task

class basico.task_sensitivities.EnumHelper

Bases: object

Utility class for dealing with mapping from names to enums easier

classmethod from_enum(int_value)
classmethod get_all_names()
classmethod to_enum(value)
class basico.task_sensitivities.SENS

Bases: EnumHelper

Class for Sensitivity object lists

ALL_INITIAL_VALUES = 'All initial Values'
ALL_LOCAL_PARAMETER_VALUES = 'Local Parameter Values'
ALL_ODE_VARIABLES = 'All independent Variables of the model'
ALL_PARAMETER_AND_INITIAL_VALUES = 'All Parameter and Initial Values'
ALL_PARAMETER_VALUES = 'All Parameter Values'
ALL_VARIABLES = 'All Variables of the model'
ASS_COMPARTMENT_VOLUMES = 'Values of Compartment Volumes with Assignment'
ASS_GLOBAL_PARAMETER_VALUES = 'Values of Global Quantities with Assignment'
ASS_METAB_CONCENTRATIONS = 'Concentrations of Species with Assignment'
ASS_METAB_NUMBERS = 'Numbers of Species with Assignment'
COMPARTMENTS = 'Compartments'
COMPARTMENT_INITIAL_VOLUMES = 'Compartment Initial Volumes'
COMPARTMENT_RATES = 'Compartment Volume Rates'
COMPARTMENT_VOLUMES = 'Compartment Volumes'
CONST_COMPARTMENT_VOLUMES = 'Constant Compartment Volumes'
CONST_GLOBAL_PARAMETER_INITIAL_VALUES = 'Constant Global Quantity Values'
CONST_METAB_CONCENTRATIONS = 'Constant Concentrations of Species'
CONST_METAB_NUMBERS = 'Constant Numbers of Species'
EMPTY_LIST = 'Not Set'
GLOBAL_PARAMETERS = 'Global Quantity'
GLOBAL_PARAMETER_INITIAL_VALUES = 'Global Quantity Initial Values'
GLOBAL_PARAMETER_RATES = 'Global Quantity Rates'
GLOBAL_PARAMETER_VALUES = 'Global Quantity Values'
METABS = 'Species'
METAB_CONCENTRATIONS = 'Concentrations of Species'
METAB_CONC_RATES = 'Concentration Rates'
METAB_INITIAL_CONCENTRATIONS = 'Initial Concentrations'
METAB_INITIAL_NUMBERS = 'Initial Numbers'
METAB_NUMBERS = 'Numbers of Species'
METAB_PART_RATES = 'Particle Rates'
METAB_TRANSITION_TIME = 'Transition Time'
NON_CONST_COMPARTMENT_VOLUMES = 'Non-Constant Compartment Volumes'
NON_CONST_GLOBAL_PARAMETER_VALUES = 'Non-Constant Global Quantity Values'
NON_CONST_METAB_CONCENTRATIONS = 'Non-Constant Concentrations of Species'
NON_CONST_METAB_NUMBERS = 'Non-Constant Numbers of Species'
ODE_COMPARTMENT_VOLUMES = 'Values of Compartment Volumes with ODE'
ODE_GLOBAL_PARAMETER_VALUES = 'Values of Global Quantities with ODE'
ODE_METAB_CONCENTRATIONS = 'Concentrations of Species with ODE'
ODE_METAB_NUMBERS = 'Numbers of Species with ODE'
REACTIONS = 'Reactions'
REACTION_CONC_FLUXES = 'Concentration Fluxes of Reactions'
REACTION_METAB_CONCENTRATIONS = 'Concentrations of Species determined by Reactions'
REACTION_METAB_NUMBERS = 'Numbers of Species determined by Reactions'
REACTION_PART_FLUXES = 'Particle Fluxes of Reactions'
REDUCED_JACOBIAN_EV_IM = 'Imaginary part of eigenvalues of the reduced jacobian'
REDUCED_JACOBIAN_EV_RE = 'Real part of eigenvalues of the reduced jacobian'
SINGLE_OBJECT = 'Single Object'
class basico.task_sensitivities.SENS_ST

Bases: EnumHelper

Enumeration of Sensitivity Subtasks

CrossSection = 'Cross Section'
Evaluation = 'Evaluation'
Optimization = 'Optimization'
ParameterEstimation = 'Parameter Estimation'
SteadyState = 'Steady State'
TimeSeries = 'Time Series'
basico.task_sensitivities.get_scaled_sensitivities(**kwargs)

Returns the scaled sensitivity matrix as pandas data frame

Parameters:

kwargs

optional arguments

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • run_first: boolean flag indicating that the task should be run first (defaults to false)
  • settings: a dictionary with the settings to apply first
  • use_initial_values: boolean flag indicating whether initial values should be used (true by default)

Returns:

the scaled sensitivity matrix

Return type:

pd.DataFrame

basico.task_sensitivities.get_sensitivity_settings(basic_only=True, **kwargs)

Returns the settings of the sensitivity task

Parameters:
  • basic_only (bool) – if true, only basic parameters will be returned

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

the settings as dictionary

Return type:

dict

basico.task_sensitivities.get_summarized_sensitivities(**kwargs)

Returns the summarized sensitivity matrix as pandas data frame

The summarized result is computed as the 2 norm of the scaled result, thus collapsing the dimension

Parameters:

kwargs

optional arguments

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • run_first: boolean flag indicating that the task should be run first (defaults to false)
  • settings: a dictionary with the settings to apply first
  • use_initial_values: boolean flag indicating whether initial values should be used (true by default)

Returns:

the summarized sensitivity matrix

Return type:

pd.DataFrame or None

basico.task_sensitivities.get_unscaled_sensitivities(**kwargs)

Returns the unscaled sensitivity matrix as pandas data frame

Parameters:

kwargs

optional arguments

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • run_first: boolean flag indicating that the task should be run first (defaults to false)
  • settings: a dictionary with the settings to apply first
  • use_initial_values: boolean flag indicating whether initial values should be used (true by default)

Returns:

the unscaled sensitivity matrix

Return type:

pd.DataFrame

basico.task_sensitivities.run_sensitivities(**kwargs)

Runs the sensitivity task, the result is obtained

by calling:

  • get_scaled_sensitivies

  • get_unscaled_sensitivies or

  • get_summarized_sensitivites

Parameters:

kwargs

optional arguments

  • model: to specify the data model to be used (if not specified
    the one from get_current_model() will be taken)
  • settings: a dictionary with the settings to apply first
  • use_initial_values: boolean flag indicating whether initial values should be used (true by default)

Returns:

None

basico.task_sensitivities.set_sensitivity_settings(settings, **kwargs)

Applies the settings to the sensitivity task

Parameters:
  • settings (dict) – the setting dictionary with keys, as obtained by get_sensitivity_settings

  • kwargs

    optional arguments

    • model: to specify the data model to be used (if not specified
      the one from get_current_model() will be taken)

Returns:

None